Math, asked by Anonymous, 8 months ago

COORDINATE GEOMETRY
CLASS 10
________________________

•Please answer the question in the picture.
________________________

THANKS...​ ​this​

Attachments:

Answers

Answered by abhi569
4

Answer:

1 and 17

Step-by-step explanation:

Using distance formula:

Distance between any two points ( x_1, y_1 ) and ( x_2, y_2 ) is given by:

\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

Here, points are ( x, 4 ) and ( 9, 10 ), and distance between them is 10.

= > \sqrt{(x-9)^2+(4-10)^2} = 10

= > ( x - 9 )^2 + ( - 6 )^2 = 10^2

= > ( x - 9 )^2 = 100 - 36

= > ( x - 9 )^2 = 64 = 8^2

= > x - 9 = ± √8^2 = ± 8

= > x = ± 8 + 9

So,

x = - 8 + 9 or 8 + 9

x = 1 or 17

Answered by TheProphet
3

Solution :

\underline{\bf{Given\::}}}

The distance between the points P(x,4) & Q(9,10) is 10 units .

\underline{\bf{Explanation\::}}}

As we know that formula of the distance;

\boxed{\bf{D=\sqrt{(x_2 - x_1)^{2} + (y_2 - y_1)^{2} }}}

Where,

  • x1 = x
  • x2 = 9
  • y1 = 4
  • y2 = 10

\longrightarrow\sf{PQ=\sqrt{(x_2 - x_1)^{2} + (y_2 - y_1)^{2}}}\\\\\longrightarrow\sf{10=\sqrt{(9-x)^{2} + (10-4)^{2} } }\\\\\longrightarrow\sf{10=\sqrt{(9-x)^{2} + (6)^{2} }} \\\\\longrightarrow\sf{10=\sqrt{(9-x)^{2} + 36}}

∴ Squaring both the sides;

\longrightarrow\sf{(10)^{2} = \big(\sqrt{(9-x)^{2} + 36}\big)^{2}}\\\\\longrightarrow\sf{100 = (9-x)^{2} + 36}\\\\\longrightarrow\sf{(9-x)^{2} = 100 - 36}\\\\\longrightarrow\sf{(9-x)^{2} = 64}\\\\\longrightarrow\sf{(9)^{2} + (x)^{2} - 2\times 9\times x = 64}\\\\\longrightarrow\sf{81 + x^{2} - 18x = 64}\\\\\longrightarrow\sf{x^{2} -18x +81 - 64 = 0}\\\\\longrightarrow\sf{x^{2} -18x + 17 = 0}\\\\\longrightarrow\sf{x^{2} - 17x - x +17 = 0}\\\\\longrightarrow\sf{x(x-17) -1(x-17)=0}\\\\

\longrightarrow\sf{(x-17)(x-1)=0}\\\\\longrightarrow\sf{x-17=0\:\:\:Or\:\:\:x-1=0}\\\\\longrightarrow\bf{x=17\:\:\:Or\:\:\:x=1}

Thus;

The value of x will be 1 or 17 .

Similar questions