Chemistry, asked by Yogeshpatidar6609, 1 year ago

Copper crystallizes in fcc lattice the edge length of its unit cell is 3.608*10^-8cm calculate the density of crystal given atomic mass of copper= 63u

Answers

Answered by ppurohit2014pp
1

Copper crystallizes in fcc lattice the edge length of its unit cell is 3.608*10^-8cm calculate the density of crystal given atomic mass of copper= 63u

Answered by MajorLazer017
7

Correct question :

Copper crystallizes in fcc lattice the edge length of its unit cell is \rm{3.61\times{}10^{-8}\:cm.} Calculate the density of copper (given M = 63.5).

Answer :

  • Density of copper = 8.87 g/cm³.

Step-by-step explanation :

Given that,

  • Edge length, a = \rm{3.61\times{}10^{-8}\:cm}

Also,

  • For fcc lattice, Z = 4.
  • Molar mass of copper = 63.5 g/mol.
  • Avogadro's number = \rm{6.023\times{}10^{23}\:mol^{-1}}

\hrulefill

We know, \rm{\rho=\dfrac{Z\times{}M}{a^3\times{}N_0}}

Putting the given values, we get,

\rm{Density=\dfrac{4\times{}63.5\:g\:mol^{-1}}{(3.61\times{}10^{-8}\:cm)^3\times{}6.023\times{}10^{23}\:mol^{-1}}}

Solving, we get,

\rm{Density=}\:\bold{8.97\:g\:cm^{-3}}

Similar questions