Math, asked by kamalhajare543, 5 hours ago

Correct and best answer I will Drop
1000
Thanks
\pink{2cos \frac{\pi}{13} \cos \frac{9\pi}{13}+ \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} = 0}
No spam​

Answers

Answered by llAngelsnowflakesll
86

Given:-

\pink{2cos \frac{\pi}{13} \cos \frac{9\pi}{13}+ \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} = 0}

To Assume:-

  • Prove it

Solution:-

\pink{2cos \frac{\pi}{13} \cos \frac{9\pi}{13}+ \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} = 0}

Taking L.H.S

\blue{2cos \frac{\pi}{13} \cos \frac{9\pi}{13}+ \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} = 0}

2 \cos \times cos \: y \:   = cos(x + y) + cos(x - y) \\ putting \: \:  \: x =  \frac{9\pi}{13}  \: and \:  \frac{\pi}{13}  \\ 2cos \:   \: \frac{9\pi}{13} cos \:  \frac{\pi}{13}  =  \cos( \frac{9\pi}{13}  +  \frac{\pi}{13})  + cos( \frac{9\pi}{13}  +  \frac{\pi}{13} ) = cos( \frac{10\pi}{13} ) + cos( \frac{8\pi}{13} ) \\  = (cos \frac{10\pi}{13}  + cos \frac{8\pi}{13} ) + cos \frac{3\pi}{13}  + cos \frac{5\pi}{13}  \\

cos( \frac{10\pi}{13}  + cos \:  \frac{3\pi}{13}  + (cos \frac{8\pi}{13}  + cos \:  \frac{5\pi}{13}  )\\

Using \:  cos \:  x + cos \: y = 2 \: cos \:  \:  \frac{x + y}{2}  \:  \: cos \:  \:  \frac{x - y}{2}  \\   (2cos \:  \:   (\frac{ \frac{10\pi}{13}  +  \frac{3\pi}{13}  }{10} ) .cos \: ( \frac{  \frac{10\pi}{13}    -   \frac{3\pi}{13}}{2} )) + (2 \: cos \: ( \frac{ \frac{8\pi}{13}  +  \frac{5\pi}{13} }{2} ).cos ( \frac{ \frac{8\pi}{13} -   \frac{5\pi}{13} }{2} )) \\ (2 \: cos \: ( \frac{ \frac{13\pi}{13}   }{2 } ).cos \:  \: ( \frac{ \frac{7\pi}{13} }{2} )) + (2cos \:  \frac{ \frac{13\pi}{13} }{2} .cos \frac{ \frac{3\pi}{13} }{2} ) \\

(2cos \frac{\pi}{2} .cos \frac{7\pi}{26} ) + (2cos \frac{\pi}{2} .cos \frac{3\pi}{26} ) \\ 2cos \frac{\pi}{2} (cos \frac{7\pi}{26}  + cos \frac{3\pi}{26} ) \\ 2 \times 0(cos \frac{7\pi}{26}  + cos \frac{3\pi}{26} ) \:  \:  \:  \:  \: (cos \frac{\pi}{2}  = 0) \\  = 0 \\

R.H.S

\small\color{black}\boxed{\colorbox{white}{∴Hence,L.H.S =R.H.S}}

\small \color{hotpink}\boxed{\colorbox{white}{Hence Proved}}

Answered by BrainIyGIiter
28

Step-by-step explanation:

‎\sf Distance \ Formula = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

Similar questions