Math, asked by kavyachandika, 6 months ago

Correct answer will be marked as brainliest ​

Attachments:

Answers

Answered by OfficialPk
22

Answer:

 =\frac{12 {f}^{2} - 3 {e}^{2}  }{10f - 5e}  \div  \frac{6e + 12f}{15 {f}^{2} }  \\

= \frac{3(4 {f}^{2} -  {e}^{2} ) }{5(2f - e)}  \times  \frac{15 {f}^{2} }{6(e + 2f)}  \\

 =\frac{3 {f}^{2}(4 {f}^{2}  -  {e}^{2}  )}{2(2f - e)(2f + e)}  \\

 =\frac{12 {f}^{4} - 3 {f}^{2} {e}^{2}   }{2(( {2f}^{2}) -  {e}^{2})  }  \\

=\frac{12 {f}^{4} - 3 {f}^{2} {e}^{2}   }{2(4 {f}^{2} -  {e}^{2})  } \\

=\frac{12 {f}^{4} - 3 {f}^{2} {e}^{2}   }{8 {f}^{2} - 2 {e}^{2}  } \\

Answered by ITZBFF
41

\mathsf{\begin{gathered} =\frac{12 {f}^{2} - 3 {e}^{2} }{10f - 5e} \div \frac{6e + 12f}{15 {f}^{2} } \\ \end{gathered}}  \\  \\ \mathsf{\begin{gathered}= \frac{3(4 {f}^{2} - {e}^{2} ) }{5(2f - e)} \times \frac{15 {f}^{2} }{6(e + 2f)} \\ \end{gathered} } \\  \\ \mathsf{\begin{gathered} =\frac{3 {f}^{2}(4 {f}^{2} - {e}^{2} )}{2(2f - e)(2f + e)} \\ \end{gathered}}  \\  \\ \mathsf{\begin{gathered} =\frac{12 {f}^{4} - 3 {f}^{2} {e}^{2} }{2(( {2f}^{2}) - {e}^{2}) } \\ \end{gathered}} 	 \\  \\  \mathsf{\begin{gathered}=\frac{12 {f}^{4} - 3 {f}^{2} {e}^{2} }{2(4 {f}^{2} - {e}^{2}) } \\ \end{gathered}  }\\  \\ \mathsf{\begin{gathered}=\frac{12 {f}^{4} - 3 {f}^{2} {e}^{2} }{8 {f}^{2} - 2 {e}^{2} } \\ \end{gathered}}  \\  \\

Similar questions