Math, asked by prasadlakhmi5, 1 month ago

correct answer will be marked as Brainliest

Attachments:

Answers

Answered by Msrihari
1

Step-by-step explanation:

2.15470054 is answer

MARK AS BRAINLIST

Answered by MathHacker001
9

\large\bf\underline\red{Answer \:  :-}

Given :

\sf{ \frac{ \sqrt{3} - 1 }{ \sqrt{3} + 1 } } \\

Rationalization :

\sf\longrightarrow{ \frac{ \sqrt{3} - 1 }{ \sqrt{3}  + 1} \times  \frac{ \sqrt{3}  - 1}{ \sqrt{3} - 1 }  }  \\

Here in numerator we use formula

(a-b)² = a² - 2ab + b²

In denominator we use formula

(a+b) (a-b) = a² - b²

\sf\longrightarrow{ \frac{( \sqrt{3}) {}^{2} - 2( \sqrt{3})(1) + (1) {}^{2}    }{( \sqrt{3}) {}^{2}  - (1) {}^{2}  } }  \\  \\ \sf\longrightarrow{ \frac{3 - 2 \sqrt{3} + 1 }{3 - 1} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf\longrightarrow{ \frac{4 - 2 \sqrt{3} }{2}  }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

After rationalizing we get,

{\large{\leadsto{\underline{\boxed{\bf{\red{ \frac{4 - 2 \sqrt{3} }{2} }}}}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Important Formula's

\begin{gathered}\boxed{\begin{array}{c} \\ \tiny\bf{\dag}\:\underline{\frak{\rm{S}\frak{ome\:important\:algebric\:identities\:::}}} \\\\ \green{\bigstar}\:\rm \red{ (A+B)^{2} = A^{2} + 2AB + B^{2}} \\\\ \red{\bigstar}\rm\: \green{(A-B)^{2} = A^{2} - 2AB + B^{2}} \\\\ \orange{\bigstar}\rm\: \blue{A^{2} - B^{2} = (A+B)(A-B)}\\\\ \blue{\bigstar}\rm\: \orange{(A+B)^{2} = (A-B)^{2} + 4AB}\\\\ \pink{\bigstar}\rm\: \purple{(A-B)^{2} = (A+B)^{2} - 4AB}\\\\ \purple{\bigstar} \rm\: \pink{(A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}}\\\\ \gray{\bigstar}\rm\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\ \bigstar\rm\: \gray{A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})} \\\\ \end{array}}\end{gathered}

Similar questions