Math, asked by duttarabisankapesaff, 10 months ago

correct answer will be marked as brainliest and his or her account will be followed ​

Attachments:

Answers

Answered by Sudhir1188
2

Step-by-step explanation:

Please find the attachment.

hope this helps u

Attachments:
Answered by MrBhukkad
3

</p><p>\huge{\mathfrak{ \overbrace{ \underbrace{ \pink{ \fbox{ \green{ \blue{A} \pink{n} \red{s} \green{w} \purple{e} \blue{r}}}}}}}}

 \tt{ \large{ \underline{ \underline{ \orange{Answer}}}}}: -  \\  \bf{Prove \: that,} \\  \bf{ \frac{1}{sinA + cosA} +  \frac{1}{sinA - cosA} =  \frac{2sinA}{1 - 2 {cos}^{2} A}} \\ \\ \tt{ \large{ \underline{ \underline{ \blue{Solution}}}}}:  -  \\    \sf{ \underline{L.H.S.}}\\ \\  \\  \bf{Formulas \: used}: \\  \boxed{ \bf{ {sin}^{2}A = 1 -  {cos}^{2} A }} \\  \boxed{ \bf{ {a}^{2} -  {b}^{2} = (a + b)(a - b)}} \\  \\  \\  \longrightarrow  \bf \frac{1}{sinA + cosA}  +  \frac{1}{sinA - cosA}  \\  \longrightarrow \bf  \frac{sinA -  \cancel{cosA} + sinA + \cancel{ cosA}}{(sinA + cosA)(sinA - cosA)}  \\  \longrightarrow \bf \frac{2sinA}{ {sin}^{2} A -  {cos}^{2}A }  \\  \longrightarrow \bf   \frac{2sinA}{1 -  {cos}^{2}A -  {cos}^{2}A  }  \\  \longrightarrow \bf  \frac{2sinA}{1 - 2 {cos}^{2} A}  =  \sf{R.H.S.} \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \purple{ \mathbb{(PROVED)}}

Similar questions