Math, asked by duttarabisankapesaff, 11 months ago

correct answer will be marked as brainliest and his or her account will be followed ​

Attachments:

Answers

Answered by Anonymous
3

#

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

QuEstiOn

prove that ,

\sf{\ \ {\dfrac{\sin A+\cos A}{\sin A-\cos A}+\dfrac{\sin A-\cos A}{\sin A+\cos A}=\dfrac{2}{2\sin^2A-1}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

ANsWeR

L.H.S.=\sf{\ \ {\dfrac{\sin A+\cos A}{\sin A-\cos A}+\dfrac{\sin A-\cos A}{\sin A+\cos A}}}

=\sf{\ \ {\dfrac{(\sin A+\cos A)^2+(\sin A-\cos A)^2}{(\sin A-\cos A)(\sin A+\cos A)}}}

=\sf{\ \ {\dfrac{2(\sin^2 A+\cos^2 A)}{(\sin^2 A-\cos^2 A)}}}

=\sf{\ \ {\dfrac{2(1)}{\sin^2 A-(1-\sin^2 A)}}}

=\sf{\ \ {\dfrac{2}{\sin^2 A+\sin^2 A-1}}}

=\sf{\ \ {\dfrac{2}{2\sin^2 A-1}}}

=\sf{\ \ {R.H.S.= (proved)}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Used Formula :-

\longrightarrow\sf{\ \ {(A+B)^2+(A-B)^2=2(A^2+B^2)}}

\longrightarrow\sf{\ \ {(A+B)^2-(A-B)^2=4AB}}

\longrightarrow\sf{\ \ {(A+B)(A-B)^2=A^2-B^2}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Answered by Anonymous
2

Solution

 \frac{ \sin(a)  +  \cos(a) }{ \sin(a ) -  \cos(a)  }  +  \frac{ \sin(a) -  \cos(a)  }{ \sin(a)  +  \cos(a) }  =  \frac{2}{2 {sin}^{2} a - 1 }

Left Hand Side

 =  \frac{ \sin(a)  +  \cos(a) }{ \sin(a ) -  \cos(a)  }  +  \frac{ \sin(a) -  \cos(a)  }{ \sin(a)  +  \cos(a) }

 =   \frac{{( \sin(a) +  \cos(a))  }^{2} +  {( \sin(a) -  \cos(a) ) }^{2} }{( \sin(a)  -  \cos(a) )( \sin(a) +  \cos(a)  )}

We know the formulas

  • (a + b)² = + + 2ab
  • (a - b)² = + - 2ab
  • (a-b)(a+b) = -

 </strong><strong>=</strong><strong>\frac{ { \sin}^{2} a +  {cos}^{2} a + 2sin \: a \times cos \: a \:  +  \:  {sin}^{2} a +  {cos}^{2}a - 2sin \: a \times cos \: a }{ {sin}^{2}a -  {cos}^{2} a }

we know that

  • cos²a = 1- sin²a

 =  \frac{2 {sin}^{2}a \:  +  \: 2 {cos}^{2} a }{ {sin}^{2}a - (1 -  {sin}^{2} a) }

 =  \frac{2( {sin}^{2} a +  {cos}^{2}a) }{ {sin}^{2}a - 1 +  {sin}^{2}a  }

We know that

  • sin²a + cos²a = 1

\boxed{ =  \frac{2 }{2  \: {sin}^{2}a - 1 }} RHS

Hence proved !!

__________________________

───── ❝ TheEnforceR ❞ ─────

Mark as Brainliest !! ✨✨

Similar questions