Math, asked by duttarabisankapesaff, 1 year ago

correct answer will be marked as brainliest and his or her account will be followed ​

Attachments:

Answers

Answered by Anonymous
3

Hope it helps uh!!

Keep calm and study hard

Thanks for asking

{\huge {\red {\ddot {\smile}}}}

Attachments:
Answered by BrainlyConqueror0901
1

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\red{\underline \bold{To \:Prove:}} \\   \tt:  \implies (cosec \: A - sin \: A)(sec \: A - cos \: A) =  \frac{1}{tan \: A+  \: cot \: A}

• According to given question :

 \bold{Solving \: L.H.S \: and \: R.H.S} \\   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{L.H.S} \\  \tt:  \implies (cosec \: A - sin \:A)(sec \: A - cos \: A) \\\\ \tt\circ\:cosec\:A=\frac{1}{sin\:A}\\\\ \tt\circ\:sec\:A=\frac{1}{cos\:A} \\\\ \tt:  \implies( \frac{1}{sin \: A}  - sin \: A)( \frac{1}{cos \: A} - cos \: A) \\\\ \tt\circ\:sin^{2}\:A+cos^{2}\:A=1 \\\\   \tt:  \implies  (\frac{1 -  {sin}^{2}  \: A}{sin \: A})( \frac{1 -  {cos}^{2} \: A }{cos \: A})  \\  \\ \tt:  \implies  \frac{ {cos }^{2} \: A }{sin \: A}  \times  \frac{ {sin}^{2} \: A }{cos \: A}  \\  \\ \tt:  \implies cos \:A  \times sin \: A \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bold{R.H.S} \\ \tt:  \implies \frac{1}{tan \: A+ cot \: A}  \\  \\ \tt:  \implies  \frac{1}{  \frac{sin \: A}{cos \: A}   +  \frac{cos \: A}{sin \: A} }  \\  \\ \tt:  \implies  \frac{1}{ \frac{ {sin}^{2} \: A+  {cos}^{2} \: A  }{cos \: A  \times sin \: A} }  \\  \\ \tt:  \implies  \frac{1}{ \frac{1}{cos \: A \times sin \: A} }  \\  \\ \tt:  \implies  cos \: A\times  sin \: A \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \green{\bold{L.H.S = R.H.S}} \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\huge{\red{\bold{Proved}}}

Similar questions