Social Sciences, asked by anuj7271717, 10 months ago

Correct answers only

Solve for total surface area and curved surface area of a cylinder of which height and radius both is 49cm.

I will report wrong answer​

Answers

Answered by Anonymous
93

\large{\red{\bold{\underline{Given:}}}}

 \sf \: Radius \: of \: the \: cylinder = 49cm \\  \\  \sf \: Height \: of \: cylinder = 49cm

\large{\green{\bold{\underline{To \: Find:}}}}

 \sf \: (i) \: Total \: surface \: area \: of \: cylinder \\  \\  \sf \: (ii) \: Curved \: surface \: area \: of \: cylinder

\large{\blue{\bold{\underline{Formula \: Used:}}}}

 \sf \: Total \:  surface \:  area = 2\pi r(r + h) \\  \\  \sf \: Curved  \: surface  \: area = 2\pi rh

\large{\red{\underline\bold{{Solution:}}}}

 \sf \: Let \: the \: radius \: of \: the \: cylinder \: be \: r, \\ \sf \: and \: the \: height \: of \: the \: cylinder \: as \: h

\large{\green{\bold{\underline{Then:}}}}

\sf \: (i) \: Total \:  surface  \: area  = 2\pi r(r + h)  \\  \\ \rightarrow \: \sf Total \:  surface  \: area = 2 \times  \frac{22}{7}  \times 49(49 + 49) \\  \\ \rightarrow \: \sf Total \:  surface  \: area = 2 \times  \frac{22}{7} \times 49(98) \\  \\ \rightarrow \: \sf \: Total \:  surface  \: area =  \frac{44}{\cancel7}   \times \cancel49 \times 98 \\  \\ \rightarrow \: \sf \: Total \:  surface  \: area =  44 \times 7 \times 98 \\  \\ \rightarrow \: \sf \: Total \:  surface  \: area = 30,184 \:  {cm}^{2}

\large{\pink{\bold{\underline{Now:}}}}

 \sf \: (ii) \: Curved \:  surface \:  area  = 2\pi rh \\  \\ \rightarrow \: \sf \: Curved \:  surface \:  area = 2 \times  \frac{22}{7}  \times 49 \times 49 \\  \\ \rightarrow \: \sf \: Curved \:  surface \:  area =  2 \times  \frac{22}{\cancel7}  \times \cancel49 \times 49 \\ \\ \rightarrow \: \sf \: Curved \:  surface \:  area = 44 \times 7  \times 49 \\  \\ \rightarrow \: \sf \: Curved \:  surface \:  area = 15,092\:  {cm}^{2}

\large{\orange{\bold{\underline{Therefore:}}}}

 \sf \: The \: total \: surface \: area \: of \: cylinder \: is \\ \sf \: 30,184{cm}^{2}  \: and \: curved \: surface \: area \: is \: 15,092 {cm}^{2}.

Answered by Anonymous
6

Question:

Find the total surface area and curved surface area of a cylinder of radius 21 cm and height 49 cm.

\sf\large\pink{\underbrace{ Solution : }}

★ Given that,

\rm\:	\implies \: Radius (r) _{(Cylinder)}=21cm.

\rm\:	\implies \: Height (h) _{(Cylinder)}=49cm

.

★ To find,

\rm\blue{\implies Total\:surface\:area\:_{(Cylinder}}

\rm\blue{\implies Curved\:surface\:area\:_{(Cylinder)}}

★ Now,

\tt\purple{\implies Total\:Surface\:area\: of\:cylinder\:= 2\pi \: r(r + h)}

Substitute the value

</p><p></p><p>\bf\:\implies 2 \times\frac{22}{7} \times 21 (21 + 49)</p><p></p><p>

\bf\:\implies 2 \times 22 \times 3 \times 70 \\ </p><p></p><p>\bf\:\implies 9,240 \\ </p><p></p><p>\tt\purple{\implies Curved\:Surface\:area\: of\:cylinder\:= 2\pi \:rh }</p><p>

Substitute the values.

\bf\:\implies 2 \times\frac{22}{7} \times 21\times 49 \\ </p><p></p><p>\bf\:\implies 2 \times 22 \times 3\times 49 \\ </p><p></p><p></p><p>\bf\:\implies 6,468

★ Total surface area of cylinder = 9,240 cm².

★ Curved surface area of cylinder = 6,468 cm².

________________

Cylinder formulas :

\sf\: \implies Total \: surface \: area \: of \: cylinder = 2\pi \:r(r + h) \\ </p><p></p><p>\sf\: \implies Curved \: surface \: area \: of \: cylinder = 2\pi rh \\ </p><p></p><p>\sf\: \implies Volume \: of \: cylinder = \pi r^{2} h

___________________

Similar questions