Math, asked by reetsapra14, 1 month ago

Correct rationalization of 1/(7+5√2) is
a. 5 -7√2
b. 5√2-7
c. 7+5√2
d. None of these

Answers

Answered by Anonymous
3

Answer:

b) 5√2- 7 is the correct answer

Attachments:
Answered by ItzImran
11

\huge\color{aqua}\ \boxed{\colorbox{black}{Answer : ♞ }}

\frac{ 1  }{ (7+5 \sqrt{ 2)  }    }

 \color{red}SOLUTION:

Rationalize \: the \: denominator \: of \\  \frac{1}{7+5\sqrt{2}} \: by \: multiplying \:  \\ numerator \: and \: denominator \\ by 7-5\sqrt{2}.

 =  > \frac{7-5\sqrt{2}}{\left(7+5\sqrt{2}\right)\left(7-5\sqrt{2}\right)}

Consider \: \left(7+5\sqrt{2}\right)\left(7-5\sqrt{2}\right).  \\ Multiplication \: can \: be \:  \\ transformed \: into \: difference \:  \\ of squares \: using \: the \: rule:  \\  \color{blue}\left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.

 =  > \frac{7-5\sqrt{2}}{7^{2}-\left(5\sqrt{2}\right)^{2}}

Calculate \: 7 \: to \: the \: power \: of \\ 2 \: and \: get \: 49.

 =  > \frac{7-5\sqrt{2}}{49-\left(5\sqrt{2}\right)^{2}}

Expand \left(5\sqrt{2}\right)^{2}.

 =  > \frac{7-5\sqrt{2}}{49-5^{2}\left(\sqrt{2}\right)^{2}}

Calculate \: 5 \: to \: the \: power \: of  \\ 2 \: and \: get \: 25.

 =  > \frac{7-5\sqrt{2}}{49-25\left(\sqrt{2}\right)^{2}}

The \: square \: of \: \sqrt{2} \: is \: 2.

 =  > \frac{7-5\sqrt{2}}{49-25\times 2}

Multiply \: 25 \: and \: 2 \: to \: get \: 50.

 =  > \frac{7-5\sqrt{2}}{49-50}

Subtract \: 50 \: from \: 49 \: to \: get -1.

 =  > \frac{7-5\sqrt{2}}{-1}

Anything \: divided \: by \: -1 \: gives \: \\  its \: opposite. \: To \:  find \: the \\ opposite \: of \: 7-5\sqrt{2}, \: find \: the \\ opposite \: of \: each \: term.

 =  > -7-\left(-5\sqrt{2}\right)

The \: opposite \: of \: -5\sqrt{2} \:  \: is \: \:  5\sqrt{2}.

 =  >  \: -7+5\sqrt{2}

 \color{blue}5\sqrt{2}-7\approx 0.071067812

Similar questions