Math, asked by jsanjan77, 11 months ago

(cos 0 + sin 45+sin 30)(sin90-cos45+cos60)​

Answers

Answered by Anonymous
14

Answer:

\large\boxed{\sf{\dfrac{7}{4}}}

Step-by-step explanation:

We have to find the value of,

( \cos0 +  \sin45 +  \sin30 ) ( \sin90 -  \cos45 +  \cos60)

Now, We know the values of,

  •  \cos(0)  = 1

  •  \cos(45)  =  \frac{1}{ \sqrt{2} }

  •  \cos(60)  =  \frac{1}{2}

  •  \sin(30)  =  \frac{1}{2}

  •  \sin(45)  =  \frac{1}{ \sqrt{2} }

  •  \sin(90)  = 1

Substituting the values, We get,

 = (1 +  \dfrac{1}{ \sqrt{2} } +  \dfrac{1}{2} )(1 -  \dfrac{1}{ \sqrt{2} }  +  \dfrac{1}{2} ) \\  \\  = ( \dfrac{3}{2}  +  \dfrac{1}{ \sqrt{2} } )( \dfrac{3}{2}  -  \dfrac{1}{ \sqrt{2} } ) \\  \\  =  {( \dfrac{3}{2}) }^{2}  -  {( \dfrac{1}{ \sqrt{2} }) }^{2}  \\  \\  =  \dfrac{9}{4}  -  \dfrac{1}{2}  \\  \\  =  \dfrac{18 - 4}{8}  \\  \\  =  \dfrac{14}{8}  \\  \\  =  \dfrac{7}{4}

Similar questions