Math, asked by rameshsneha2003, 9 months ago

cos^-1(2x/1+x^2)=π/2-tan^-1x​

Answers

Answered by sushmitachauhan2012
0

Answer:

Step-by-step explanation:

To prove:

cos^{-1}\frac{2x}{1+x^{2}} =\frac{\pi }{2}-tan  ^{-1}x

Proof:

Let x=tan \theta \\                                          

\theta=tan^{-1}x

L.H.S.

=cos^{-1}[\frac{2(tan\theta)}{1+(tan\theta)^{2}}]\\                                     ∵  \frac{2(tan\theta)}{1+(tan\theta)^{2}}=sin(2\theta)

=cos^{-1}[{sin(2\theta})]\\

=cos^{-1}[{cos(\frac{\pi }{2}-2\theta})]\\=\frac{\pi }{2}-2\theta\\

=\frac{\pi }{2}-2tan^{-1}x                                          ∵ \theta=tan^{-1}x

\\=R.H.S.

Similar questions