Math, asked by Arnav7010, 11 months ago

cos⁻¹ 4/5 + sin⁻¹ 5/13 = tan⁻¹(56/33),Prove it.

Answers

Answered by abhi178
5

we have to prove that,

cos⁻¹ 4/5 + sin⁻¹ 5/13 = tan⁻¹(56/33)

LHS = cos⁻¹ 4/5 + sin⁻¹ 5/13

Let cos^-1(4/5) = A ⇒cosA = 4/5

then, tanA = √(5² - 4²)/4 = 3/4.....(1)

similarly, sin^-1(5/13) = B ⇒sinB = 5/13

then, tanB = 5/√(13² - 12²) = 5/12 .....(2)

so, cos⁻¹ 4/5 + sin⁻¹ 5/13 = A + B ........(3)

we know,

tan(A + B) = (tanA + tanB)/(1 - tanA.tanB)

from equations (1) and (2),

= (3/4 + 5/12)/(1 - 3/4 × 5/12)

= (36 + 20)/(4 × 12 - 3 × 5)

= 56/(48 - 15)

= 56/33

so, A + B = tan^-1(56/33) = RHS .......(4)

from equations (3) and (4),

cos⁻¹ (4/5) + sin⁻¹ (5/13) = tan⁻¹(56/33)

Answered by Anonymous
12

Answer with Explanation:

---------------------[To prove ]----------

\sf cos^{-1}\frac{4}{5}+sin^{-1}\frac{5}{13}=tan^{-1}(\frac{56}{33})

---------------------[proof ]---------------

Let,

\sf cos^{-1}\frac{4}{5}=x

\implies \sf cosx =\frac{4}{5}

we know, sin²Φ+cos²Φ = 1 ,

then, sin²Φ = 1-cos²Φ

\implies \sf sinx =\sqrt{1-cos^2x}=\sqrt{1-(\frac{4}{5})^2}

\implies \sf \sqrt{1-(\frac{16}{25})}=\frac{3}{5}

therefore,

\sf tanx=\frac{sinx}{cosx}=\frac{3}{4}--------①

Now, Let sin⁻¹ 5/13 = y

therefore, \sf siny =\frac{5}{13}

\sf cosy =\sqrt{1-sin^2y}=\sqrt{1-(\frac{5}{13})^2}

\sf cosy =\sqrt{1-(\frac{25}{169})}=\sqrt{144}{169}=\frac{12}{13}

So, \sf tany =\frac{5}{12}--------②

we know,

\sf tan(x+y)=\frac{tanx+tany}{1-tanx.tany}

\implies \sf \frac{\frac{3}{4}+\frac{5}{12}}{1-(\frac{3}{4})(\frac{5}{12})}

\implies \sf \frac{56/48}{33/48}=\frac{56}{33}

tan(x+y)=56/33 - - - - - - -③

from equation ① , ② , ③

\sf cos^{-1}\frac{4}{5}+sin^{-1}\frac{5}{13}=tan^{-1}(\frac{56}{33})


Rythm14: Great :D
Anonymous: thanks :)
Similar questions