cos(1)+cos(2)+...........+cos(89)=?
Answers
Answer:
we know that
2sin x cos x= sin 2x
To convert the expression,we have to multiply and divide 2 ,44 times
\begin{gathered} \frac{2 \sin(1°) \cos(1°) \times2 \sin(2°) \cos(2°) \times 2 \sin(3°) \cos(3°) \times...2 \sin(44°) \cos(44°) \times \: cos45° }{ {2}^{44} } \\ \\ = \frac{ \sin(2°) \times \sin(4°) \times \sin(6°)... \sin(88°) \times \frac{1}{ \sqrt{2} } }{ {2}^{44} } \\ \\ \cos(1°) \cos(2°) ... \cos(88°) \cos(89°) \\\\= \frac{1}{ \sqrt{2} \times {2}^{44} } \sin(2°) \times \sin(4°) \times \sin(6°)... \sin(88°) \\ \end{gathered}
2
44
2sin(1°)cos(1°)×2sin(2°)cos(2°)×2sin(3°)cos(3°)×...2sin(44°)cos(44°)×cos45°
=
2
44
sin(2°)×sin(4°)×sin(6°)...sin(88°)×
2
1
cos(1°)cos(2°)...cos(88°)cos(89°)
=
2
×2
44
1
sin(2°)×sin(4°)×sin(6°)...sin(88°)
Hope it helps you