Math, asked by TbiaSupreme, 1 year ago

cos⁻¹(cos7π/6)=..........,Select Proper option from the given options.
(a) π/6
(b) 5π/6
(c) - π/6
(d) 7π/6

Answers

Answered by MaheswariS
3

Answer:

option (b) is correct

Step-by-step explanation:

cos^{-1}(cos\frac{7\pi}{6})

\boxed{\begin{minipage}{2cm}$\bf\:cos\frac{7\pi}{6}\\ \\=cos(\pi+\frac{\pi}{6})\\ \\=-cos\frac{\pi}{6}\\ \\=-\frac{\sqrt3}{2}$\end{minipage}}

=cos^{-1}(\frac{-\sqrt3}{2})

Using

\boxed{cos^{-1}(-x)=\pi-cos^{1}x}

=\pi-cos^{-1}(\frac{\sqrt3}{2})

=\pi-\frac{\pi}{6}

=\frac{6\:\pi-\pi}{6}

=\frac{5\pi}{6}

Answered by pulakmath007
4

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

 \sf{If  \:  \:  \alpha  \:  \: is \:  the \:  principal \:  value  \: of  \:  \:  { \cos}^{ - 1}x \:  \:  then}

 \sf{ \:0 \leqslant  \alpha  \leqslant \pi  \: }

TO DETERMINE

 \displaystyle \sf{ { \cos}^{ - 1} ( \cos  \frac{7\pi}{6}  )\:  \: }

CALCULATION

 \displaystyle \sf{ { \cos}^{ - 1}  \bigg( \cos  \frac{7\pi}{6}  \bigg)\:  \: }

 =  \displaystyle \sf{ { \cos}^{ - 1}  \bigg( \cos  (\pi + \frac{ \pi}{6} ) \bigg)\:  \: }

 =  \displaystyle \sf{ { \cos}^{ - 1}  \bigg(  - \cos  \frac{ \pi}{6}  \bigg)\:  \: }

 =  \displaystyle \sf{ { \cos}^{ - 1}  \bigg( \cos  (\pi  - \frac{ \pi}{6} ) \bigg)\:  \: }

 =  \displaystyle \sf{ { \cos}^{ - 1}  \bigg( \cos   \frac{ 5\pi}{6}  \bigg)\:  \: }

 =  \displaystyle \sf{  \frac{ 5\pi}{6}  \: } \:  \:  \:  \:  (\because \: 0 \leqslant\frac{ 5\pi}{6}  \leqslant \pi \:  \:  \: )

RESULT

  \boxed{\displaystyle \sf{  \:  \:  \:  \: { \cos}^{ - 1}  \bigg( \cos   \frac{7\pi}{6} \bigg)\:   = \frac{5\pi}{6} \:  \:  \: \: }}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

tan⁻¹(x/y)-tan⁻¹(x-y/x+y)=

Select Proper option from the given options.

(a) π/4 (b) π/3 (c) π/2 (d) π

https://brainly.in/question/5596504

Similar questions