Math, asked by vipin056962, 1 year ago

Cos/1-sin+cos/1+sin=4

Answers

Answered by gurudeep87
8
simplify it then replace ø by 60° then 4 will come as answer
Attachments:
Answered by harendrachoubay
6

\dfrac{\cos A}{1-\sin A}+\dfrac{\cos A}{1+\sin A}=4, proved.

Step-by-step explanation:

Prove that, \dfrac{\cos A}{1-\sin A}+\dfrac{\cos A}{1+\sin A}=4.

L.H.S.=\dfrac{\cos A}{1-\sin A}+\dfrac{\cos A}{1+\sin A}

=\dfrac{\cos A(1+\sin A)+\cos A(1-\sin A)}{(1-\sin A)(1+\sin A)}

=\dfrac{\cos A+\cos A\sin A+\cos A-\cos A\sin A}{(1-\sin A)(1+\sin A)}

=\dfrac{\cos A+\cos A}{1^-\sin^2 A}

Using algebraic identity,

(a+b(a-b)=a^{2} -b^{2}

=\dfrac{2\cos A}{\cos^2 A}

Using trigonometric identity,

\cos^2 A=1-\sin^2 A

=\dfrac{2}{\cos A}

=2\sec A

Using trigonometric identity,

\sec A=\dfrac{1}{\cos A}

Put A = 60°

[tex]=2\sec 60 =2\times 2[/tex]

= 4 = R.H.S., proved.

Hence, \dfrac{\cos A}{1-\sin A}+\dfrac{\cos A}{1+\sin A}=4, proved.

Similar questions