Math, asked by krithikaravi2004, 7 months ago

cos ^-1 ( x/1+x) differentiate w.r.t.x ​

Answers

Answered by senboni123456
0

Step-by-step explanation:

Let

y =  \cos^{ - 1} ( \frac{x}{1 + x} )

Differentiating both sides we get,

 \frac{dy}{dx} =  \frac{ - 1}{ \sqrt{1 -  { (\frac{x}{1 + x}) }^{2} } }  . \frac{d}{dx} ( \frac{x}{1 + x} )

 =  >  \frac{dy}{dx}  =   - \frac{ {(1 + x)}^{2} }{ \sqrt{( {1 + x)}^{2}  -  {x}^{2} } } . \frac{1(1 + x) - x(1)}{(1 + x)^{2} }

 =  >  \frac{dy}{dx}  =  -  \frac{1}{ \sqrt{1 +  {x}^{2} + 2x -  {x}^{2}  } }

 = >   \frac{dy}{dx}  =  \frac{ - 1}{ \sqrt{2x + 1}}

Similar questions