Cos^-1 x+ sin^-1/√5 = π/4
Answers
Answer:
We have to prove that : cot^{-1}3+sin^{-1}\frac{1}{\sqrt{5}}=\frac{\pi}{4}
Let cot^{-1}3=A
cotA = 3 = b/p
so, h = √(b² + p²) = √(3² + 1²) = √(10)
so, sinA = p/h = 1/√10
or, A=sin^{-1}\frac{1}{\sqrt{10}}
hence, LHS = sin^{-1}\frac{1}{\sqrt{10}}+sin^{-1}\frac{1}{\sqrt{10}}
we know, sin^{-1}x+sin^{-1}y=sin^{-1}(x\sqrt{1-y^2}+y\sqrt{1-x^2})
\textbf{so},sin^{-1}\frac{1}{\sqrt{10}}+sin^{-1}\frac{1}{\sqrt{10}}=sin^{-1}\left(\frac{1}{\sqrt{10}}\times\sqrt{1-\left(\frac{1}{\sqrt{5}}\right)^2}+\frac{1}{\sqrt{5}}\sqrt{1-\left(\frac{1}{\sqrt{10}}\right)^2}\right)
=sin^{-1}\left(\frac{1}{\sqrt{10}}\times\frac{2}{\sqrt{5}}+\frac{1}{\sqrt{10}}\times\frac{3}{\sqrt{5}}\right)
=sin^{-1}\left(\frac{5}{\sqrt{50}}\right)
=sin^{-1}\left(\frac{1}{\sqrt{2}}\right)
\frac{\pi}{4}=RHS