Math, asked by Abhishek870, 1 year ago

cos 10° cos 30° cos 50° cos 70°= 3/16 Prove that​

Answers

Answered by harendrachoubay
2

(cos70°·cos10°)·(cos 50°·cos 30°) \frac{3}{16}, it is proved.

Step-by-step explanation:

L.H.S. = (cos70°·cos10°)·(cos 50°·cos 30°)

Multiplying and dividing by 2, we get

= \frac{1}{2}·(2cos70°·cos10°))·cos 50°·cos 30°)

= \frac{1}{2}·(cos(70° + 10° ) + cos(70° - 10° ))·cos 50°·cos 30°)

= \frac{1}{2}·(cos80° + cos 60°)·cos 50°·cos 30°)

Multiplying and dividing by 2, we get

= \frac{1}{4}·(cos80° + cos 60°)·(2cos50°·cos 30°)

= \frac{1}{4}·(cos80° + cos 60°)·(2cos50°·\frac{\sqrt{3} }{2})

= \frac{\sqrt{3} }{8})·(cos80° + cos 60°)·(2cos50°)

= \frac{\sqrt{3} }{8})·(2cos80°·cos 50°+ 2·cos 60°·cos 50°)

= \frac{\sqrt{3} }{8})·(cos 130° + cos 30° + 2·\frac{1}{2}·cos 50°)

= \frac{\sqrt{3} }{8})·(cos (180° - 50°) + \frac{\sqrt{3} }{2} + cos 50°)

= \frac{\sqrt{3} }{8})·(- cos 50° + \frac{\sqrt{3} }{2} + cos 50°)

= \frac{\sqrt{3} }{8})·( \frac{\sqrt{3} }{2} )

= \frac{3}{16}

= R.H.S.

Hence, it is proved.

Similar questions