cos 10° cos 30° cos 50° cos 70°= 3/16 Prove that
Answers
Answered by
2
(cos70°·cos10°)·(cos 50°·cos 30°) , it is proved.
Step-by-step explanation:
L.H.S. = (cos70°·cos10°)·(cos 50°·cos 30°)
Multiplying and dividing by 2, we get
= ·(2cos70°·cos10°))·cos 50°·cos 30°)
= ·(cos(70° + 10° ) + cos(70° - 10° ))·cos 50°·cos 30°)
= ·(cos80° + cos 60°)·cos 50°·cos 30°)
Multiplying and dividing by 2, we get
= ·(cos80° + cos 60°)·(2cos50°·cos 30°)
= ·(cos80° + cos 60°)·(2cos50°·)
= )·(cos80° + cos 60°)·(2cos50°)
= )·(2cos80°·cos 50°+ 2·cos 60°·cos 50°)
= )·(cos 130° + cos 30° + 2··cos 50°)
= )·(cos (180° - 50°) + + cos 50°)
= )·(- cos 50° + + cos 50°)
= )·( )
=
= R.H.S.
Hence, it is proved.
Similar questions