Math, asked by archita5617, 5 months ago


COS = 12/13 and sin 0 = 5/13,
therefore tan 0 =
*
O 13/5
05/12
O13/12
O 12/5​

Answers

Answered by Anonymous
4

Question:-

COS θ= 12/13 and sin θ = 5/13,

therefore tan θ =

a) 13/5

b) 5/12

c) 13/12

d) 12/5

Answer:-

  • The value of tan θ= 5/12.

Solution:-

As given,

  \cos \theta =  \frac{12}{13}  \\

   \sin \theta =  \frac{5}{13}  \\

We know,

  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   {\boxed  { \tan \theta =  \frac{ \sin \theta}{ \cos \theta}}} \\

Thus,

 \large{ \tt :  \implies \:  \:  \:  \tan \theta =  \frac{5}{13}  \div  \frac{12}{13} } \\  \\

 \large{ \tt :  \implies \:  \:  \:   \tan \theta \:  = \frac{5}{13}  \times  \frac{13}{12} } \\

 \large{ \tt :  \implies \:  \:  \:  \tan \theta =  \frac{5}{12} } \\

  • The value of tan θ= 5/12.

The correct option is (b)

Answered by Anonymous
29

Given

\tt\longmapsto{cosθ = \dfrac{12}{13}}

\tt\longmapsto{sinθ = \dfrac{5}{13}}

To find

\tt\longmapsto{The\: value\: of\: tanθ.}

Solution

We know that

\: \: \: \: \: \: \: \: \: \: \: \: \boxed{\tt{\bigstar{tanθ = \dfrac{sinθ}{cosθ}{\bigstar}}}}

\tt:\implies\: \: \: \: \: \: \: \: {tanθ = \dfrac{\dfrac{5}{13}}{\dfrac{12}{13}}}

\tt:\implies\: \: \: \: \: \: \: \: {tanθ = \dfrac{\dfrac{5}{\cancel{13}}}{\dfrac{12}{\cancel{13}}}}

\tt:\implies\: \: \: \: \: \: \: \: {tanθ = \dfrac{5}{12}}

Hence,

\tt\longmapsto{The\: value\: tanθ\: is\: \dfrac{5}{12}}.

  • Option B is the correct option.

━━━━━━━━━━━━━━━━━━━━━━

Similar questions