Math, asked by pradip9, 1 year ago

cos{π/13).cos(9π/13)+cos{3π/13)+cos(5π/13)=0, proof it

Answers

Answered by sonu579
5
First of all the question is incorrect as the first cos part include a 2
The ans is as below
Attachments:
Answered by Swarnimkumar22
5

\bold{\huge{\underline{Question}}}

2cos{π/13).cos(9π/13)+cos{3π/13)+cos(5π/13)=0, proof it

\bold{\huge{\underline{Solution-}}}

LHS = 2 cos{π/13).cos(9π/13)+cos{3π/13)+cos(5π/13)

 \bf \: [2 \: cos \frac{9\pi}{13} \times cos \frac{\pi}{13}  ] + cos \frac{3\pi}{13}  + cos \frac{5\pi}{13}  \\  \\  \bf \: [ cos\{  \frac{9\pi}{13} +  \frac{\pi}{13}  \} + cos \{  \frac{9\pi}{13 -  \frac{\pi}{13} } \}] + cos \frac{3\pi}{13}  + cos \frac{5\pi}{13}  \\  \\  \bf \: cos \frac{10\pi}{13}  + cos \frac{8\pi}{13}  + cos \frac{3\pi}{13}  + cos \frac{5\pi}{13}  \\  \\  \bf \: cos[\pi -  \frac{3\pi}{13} ] + cos[\pi -  \frac{5\pi}{13} ] + cos \frac{3\pi}{13}  + cos \frac{5\pi}{13}  \\  \\  \bf \:  - cos \frac{3\pi}{13}  + ( - cos \frac{5\pi}{13} ) + cos \frac{3\pi}{13}  + cos \frac{5\pi}{13}  \\  \\  \bf \:  = 0

Similar questions