cos 13° + sin 13°
cos 13° - sin 13°
=tan 58º.
Answers
Answered by
0
Answer:
Step-by-step explanation:
cos13
0
−sin13
0
+
cot148
0
1
=
cos13
0
+sin13
0
cos13
0
−sin13
0
+
cos148
0
sin148
0
=
cos13
0
cos148
0
+sin13
0
cos148
0
cos13
0
cos148
0
−sin13
0
cos148
0
+sin148
0
cos13
0
+sin148
0
sin13
0
=
cos13
0
cos148
0
+sin13
0
cos148
0
(cos13
0
cos148
0
+sin148
0
sin13
0
)+(sin148
0
cos13
0
−sin13
0
cos148
0
)
...[cos(A−B)=cosAcosB+sinASinB]and[sin(A−B)=sinAcosB−cosAsinB]
=
cos13
0
cos148
0
+sin13
0
cos148
0
cos(148
0
−13
0
)+sin(148
0
−13
0
)
=
cos13
0
cos148
0
+sin13
0
cos148
0
cos(135
0
)+sin(135
0
)
=
cos13
0
cos148
0
+sin13
0
cos148
0
2
−1
+
2
1
=0
Hence, the answer is option (C).
Similar questions