cos 13°
sin 13°)
Show that:
(i) tan 10° tan 15° tan 75º tan 80° = 1
(ii) sin 42° sec 48° + cos 42° cosec 48° = 2
Answers
Answered by
2
(i) tan 10° tan 15° tan 75º tan 80° = 1
L.H.S. = tan 10˚ tan 15˚ tan 75˚ tan 80˚
= tan 10˚ tan 15˚ tan (90˚ – 15˚) tan(90˚ – 10˚)
= tan 10˚ tan 15˚ cot 15˚ cot 10˚
1/cot10˚ × 1/cot 15˚ × cot 15˚ × cot 10˚
= 1 = R.H.S.
Hence proved.
Answered by
0
Step-by-step explanation:
I) tan 10° tan15° tan75° tan80°
tan10° tan(90-80)° × tan15°tan(90-75)°
tan10°cot10° × tan15°cot15°
tan10° 1/tan 10° × tan15°1/tan15°
1×1 =1
lhs= rhs
ii)sin42°sec(90-48)° + sec(90-42)°cosec48°
sin42°cos42° + sec48°coses48°
sin42°×1/sin 42° + sec 48°×1/sec48°
1 +1 =2
lhs=rhs
Similar questions