Math, asked by adarsh2710, 3 months ago

(Cos 135° - Cos 120° )/(Cos 135+ Cos 120)=3-2√2​

Attachments:

Answers

Answered by gauravkc9870
0

Answer:

Answer and Explanation:

To prove : \frac{\cos 135-\cos 120}{\cos 135+\cos 120}=3-2\sqrt2

cos135+cos120

cos135−cos120

=3−2

2

Proof :

Take LHS,

LHS=\frac{\cos 135-\cos 120}{\cos 135+\cos 120}LHS=

cos135+cos120

cos135−cos120

LHS=\frac{\cos (90+45)-\cos(90+30)}{\cos (90+45)+\cos (90+30)}LHS=

cos(90+45)+cos(90+30)

cos(90+45)−cos(90+30)

LHS=\frac{-\sin 45+\sin 30}{-\sin 45-\sin 30}LHS=

−sin45−sin30

−sin45+sin30

LHS=\frac{\sin 45-\sin 30}{\sin 45+\sin 30}LHS=

sin45+sin30

sin45−sin30

Substitute the trigonometric values,

LHS=\frac{\frac{1}{\sqrt2}-\frac{1}{2}}{\frac{1}{\sqrt2}+\frac{1}{2}}LHS=

2

1

+

2

1

2

1

2

1

LHS=\frac{\frac{2-\sqrt2}{2\sqrt2}}{\frac{2+\sqrt2}{2\sqrt2}}LHS=

2

2

2+

2

2

2

2−

2

LHS=\frac{2-\sqrt2}{2+\sqrt2}LHS=

2+

2

2−

2

Rationalize,

LHS=\frac{2-\sqrt2}{2+\sqrt2}\times \frac{2-\sqrt2}{2-\sqrt2}LHS=

2+

2

2−

2

×

2−

2

2−

2

LHS=\frac{(2-\sqrt2)^2}{2^2-(\sqrt2)^2}LHS=

2

2

−(

2

)

2

(2−

2

)

2

LHS=\frac{4+2-4\sqrt2}{4-2}LHS=

4−2

4+2−4

2

LHS=\frac{6-4\sqrt2}{2}LHS=

2

6−4

2

LHS=3-2\sqrt2LHS=3−2

2

LHS=RHSLHS=RHS

Hence proved.

Answered by Raftar62
3

Answer:

above solution is your verification

make be brainlist

Attachments:
Similar questions