Math, asked by harik10, 1 year ago

cos 15° - sin 15º = 1/root2

Answers

Answered by rishu6845
3

Answer:

√2 / 2

Step-by-step explanation:

To prove --->

Cos15° - Sin15° = 1 /√2

Proof---> We know that,

Cos ( A - B ) = CosA CosB + SinA SinB

Putting A = 45° and B = 30° , we get,

Cos( 45° - 30° ) = Cos45° Cos30° + Sin45° Sin30°

=> Cos15° = Cos45° Cos30° + Sin45° Sin30°

Putting values , we get,

= ( 1 / √2 ) ( √3 / 2 ) + ( 1 / √2 ) ( 1 / 2 )

= ( √3 / 2√2 ) + ( 1 / 2√2 )

Taking 2√2 as LCM , we get,

=> Cos15° = ( √3 + 1 ) / 2√2

Now , we know that,

Sin( A - B ) = SinA CosB - CosA SinB

Putting A = 45° and B = 30° , we get,

Sin( 45° - 30° ) = Sin45° Cos30° - Cos45° Sin30°

Putting values , we get,

=> Sin15° = ( 1 / √2 ) ( √3 / 2 ) - ( 1 / √2 ) ( 1 / 2 )

=> Sin15° = ( √3 / 2√2 ) - ( 1 / 2√2 )

Taking 2√2 as LCM , we get,

=> Sin15° = ( √3 - 1 ) / 2√2

Now , returning to original problem,

Cos15° - Sin15°

= { (√3 + 1 ) / 2√2 } - { (√3 - 1 ) / 2√2 }

Taking 2√2 as LCM, we get,

= { ( √3 + 1 ) - ( √3 - 1 ) } / 2√2

= ( √3 + 1 - √3 + 1 ) / 2√2

√3 and - √3 cancel out each other, and we get,

= 2 / 2√2

= 1 / √2

= 1 × √2 / √2 × √2

= √2 / 2

#Answerwithquality

#BAL

Answered by Aɾꜱɦ
17

<body bgcolor= “orange” ><fontcolor=“red”>

\huge\underline{\underline{\texttt{\purple{Answer-}}}}

√2/2

 \rule{300}{2}

#answerwithquality #bal

Similar questions