Math, asked by KumarDharma7955, 1 year ago

cos-1x + cos-1 {x/2 + (root(3-3x2)/2} = pie/3

Answers

Answered by MaheswariS
9

Given:

cos^{-1}x+cos^{-1}[\frac{x}{2}+\frac{\sqrt{3-3x^2}}{2}]

Take

cos^{-1}x=A

and

cos^{-1}[\frac{x}{2}+\frac{\sqrt{3-3x^2}}{2}]=B

\implies\;x=cosA and

\frac{x}{2}+\frac{\sqrt{3-3x^2}}{2}=cosB

\implies\frac{x+\sqrt{3-3x^2}}{2}=cosB

\implies\frac{cosA+\sqrt3\sqrt{1-cos^2A}}{2}=cosB

\implies\frac{cosA+\sqrt3\;sinA}{2}=cosB

\implies\frac{1}{2}cosA+\frac{\sqrt3}{2}sinA=cosB

\implies\;cos\frac{\pi}{3}\;cosA+sin\frac{\pi}{3}\;sinA=cosB

Using

\boxed{\bf\;cos(A-B)=cosA\;cosB+sinA\;snB}

\implies\;cos(\frac{\pi}{3}-A)=cosB

\implies\;\frac{\pi}{3}-A=B

\implies\;A+B=\frac{\pi}{3}

i.e\boxed{\bf\;cos^{-1}x+cos^{-1}[\frac{x}{2}+\frac{\sqrt{3-3x^2}}{2}]=\frac{\pi}{3}}

Similar questions