Math, asked by Kondi, 10 months ago

cos^2 76° + cos^2 16 - cos 76° cos 16° =
1) 1 12
2) 0

Answers

Answered by Martin84
13

Answer:

 \frac{3}{4}

Step-by-step explanation:

 { \cos(76) }^{2}  +  { \cos(16) }^{2}  -  \cos(76)  \cos(16)  \\ we \: know \: that \\  {(a - b)}^{2}  + ab =  {a}^{2}  +  {b}^{2}  - ab \\ so \\  {( \cos(76)  -  \cos(16)) }^{2}  +  \cos(76)  \cos(16)  \\ we \: know \: that \\  \cos(16 + 60)  =  \cos(60)  \cos(16)  -  \sin(60)  \sin(16)  \\  \cos(76)  =  \frac{ \cos(16) }{2}  -  \frac{ \sqrt{3}   \sin(16)  }{2}  \\ putting \: the \: value \: of \:  \cos(76)  \\ in \: above \: equation \:  \\   {(\cos( \frac{16}{2} )  -  \frac{ \sqrt{3} \sin(16)  }{2}  -  \cos(16)) }^{2}  +  { \frac{ \cos(16) }{2} }^{2}  -  \frac{ \sqrt{3}  \cos(16) \sin(16)  }{2}  \\  {(\cos( \frac{16}{2} )   +  \frac{ \sqrt{3} \sin(16)  }{2} })^{2}  \:  +  \frac{ { \cos(16) }^{2} }{2}  - \frac{ \sqrt{3}  \cos(16) \sin(16)  }{2}   \\  { \frac{ \cos(16) }{4} }^{2}  +  \frac{ { 3\sin(16) }^{2} }{4}  + \frac{ \sqrt{3}  \cos(16) \sin(16)  }{2}   +  \frac{ { \cos(16) }^{2} }{2}  - \frac{ \sqrt{3}  \cos(16) \sin(16)  }{2}  \\ \frac{ { 3\cos(16) }^{2} }{4}  +  \frac{3 \sin(16) }{4}  \\  \frac{3}{4} ( { \cos(16) }^{2}  +  { \sin(16) }^{2} ) \\  \frac{3}{4}  \\

solutions is attached above too ..

Attachments:
Similar questions