Math, asked by Adityalawerance, 11 months ago

(cos^2 A+1)tan^2 A ÷sin^2 A =1/cos^2 A solve this

Answers

Answered by Anonymous
1

Given:-

\dfrac{(cos^2A+1) tan^2A }{Sin^2A} = \dfrac{1}{Cos^2A}

Considering L. H. S

\dfrac{(cos^2A+1) tan^2A }{Sin^2A}

We know that tanA = \dfrac{sinA}{cosA}

put the value of tanA.

=\dfrac{(Cos^2A+1)\dfrac{Sin^2A}{Cos^2A}}{Sin^2A}

=\dfrac{(\cancel{cos^2A}\times\dfrac{Sin^2A}{\cancel{Cos^2A}})+(\dfrac{Sin^2A}{Cos^2A})}{Sin^2A}

=\dfrac{Sin^2A+\dfrac{Sin^2A}{Cos^2A}}{Sin^2A}

=\dfrac{\dfrac{Sin^2ACos^2A+Sin^2A}{Cos^2A}}{Sin^2A}

=\dfrac{\cancel{Sin^2ACos^2A}}{\cancel{Sin^2ACos^2A}}+\dfrac{\cancel{Sin^2A}}{\cancel{Sin^2A}Cos^2A}

1 + \dfrac{1}{Cos^2A}

L. H. S = R. H. S

hence,proved

Similar questions