Math, asked by pooja374, 1 year ago

cos^{2}a+cos^{2}a*cot^{2}α=cot^{2}a

Answers

Answered by BrainlyHulk
4
Hola Friend ✋✋✋

Your answer is....



  = { \cos }^{2}  \alpha  + { \cos }^{2}  \alpha  \times  { \cot}^{2}  \alpha  \\  \\  = { \cos }^{2}  \alpha   + { \cos }^{2}  \alpha   \times  \frac{ { \cos }^{2}  \alpha  }{{ \sin }^{2}  \alpha  }  \\  \\  =  \frac{ { \cos }^{2}  \alpha   \times { \sin }^{2}  \alpha +    { \cos }^{2}  \alpha \times  { \cos }^{2}  \alpha  }{ { \sin }^{2}  \alpha   } \\  \\  =  \frac{ { \cos }^{2}  \alpha   \times ({ \sin }^{2}  \alpha  + { \cos }^{2}  \alpha   )}{ { \sin }^{2}  \alpha  }  \\  \\  =  \frac{{ \cos }^{2}  \alpha   \times 1}{ { \sin }^{2}  \alpha   }  \\  \\  = { \cot }^{2}  \alpha


Hope it helps ♥

pooja374: not understanding
pooja374: second step
Answered by nitthesh7
4
taking lhs
=cos^2A+cos^2A*cot^2A
=cos^2A(1+cot^2A)
we know that 
1+cot^2A=cosec^2A
then
=cos^2A(cosec^2A)
we know that
cosec^2A=1/sin^2A
then
=cos^2A/sin^2A
=cot^2A   = rhs
hence proved

     ;hope this ans would be helpful
Similar questions