Math, asked by avinashods, 1 year ago

cos 2 alpha is equal to 3 cos square beta - 1 / 3 - cos 2 beta therefore find tan alpha

Attachments:

Answers

Answered by Diptanshu11
18
HOPE IT WILL BE ABLE TO HELP YOU...

PLZ MARK ME AS A BRAINLIEST
Attachments:
Answered by aquialaska
5

Answer:

Value of \frac{tan\,\alpha}{tan\,\beta}\:\:is\:\:\sqrt{2}

Step-by-step explanation:

Given: cos\,2\aplha=\frac{3cos^2\,\beta-1}{3-cos\,2\beta}

To find: \frac{tan\,\alpha}{tan\,\beta}

Consider,

cos\,2\aplha=\frac{3cos^2\,\beta-1}{3-cos\,2\beta}

\frac{1-cos\,2\alpha}{1+cos\,2\alpha}=\frac{3-cos\,2\beta-3cos\,2\beta+1}{3-cos\,2\beta+3cos\,2\beta-1}

tan^2\,\alpha=\frac{4-4cos\,2\beta}{2+2cos\,2\beta}

tan^2\,\alpha=2\times\frac{2-2cos\,2\beta}{1+cos\,2\beta}

tan^2\,\alpha=2\times tan^2\,\beta}

\frac{tan^2\,\alpha}{tan^2\,\beta}=2

(\frac{tan\,\alpha}{tan\,\beta})^2=2

\frac{tan\,\alpha}{tan\,\beta}=\sqrt{2}

\frac{tan\,\alpha}{tan\,\beta}=\frac{\sqrt{2}}{1}

Therefore, Value of \frac{tan\,\alpha}{tan\,\beta}\:\:is\:\:\sqrt{2}

Similar questions