Math, asked by piyushsharma82paxg79, 7 months ago

cos α+ 2 cos 3α+ cos 5α
_____________________
cos 3α + 2 cos 5α + cos 7 α

=cos 3α sec 5α.


Very urgent please solve

Don’t spam ​

Attachments:

Answers

Answered by pulakmath007
70

SOLUTION :

TO PROVE

 \displaystyle \sf{  \frac{ \cos  \alpha + 2 \cos 3 \alpha + \cos 5 \alpha  }{ \cos 3 \alpha + 2  \cos 5 \alpha +  \cos 7 \alpha} \: }

 \sf{  = \cos  3\alpha  \sec  5\alpha}

FORMULA TO BE IMPLEMENTED

 \displaystyle \sf{} \cos C  +  \cos D =  2\cos  \bigg( \frac{C + D}{2} \bigg) \cos  \bigg( \frac{C  -  D}{2} \bigg)

PROOF

LHS

 =  \displaystyle \sf{  \frac{ \cos  \alpha + 2 \cos 3 \alpha + \cos 5 \alpha  }{ \cos 3 \alpha + 2  \cos 5 \alpha +  \cos 7 \alpha} \: }

 =  \displaystyle \sf{  \frac{ \cos  \alpha  + \cos 5 \alpha + 2 \cos 3 \alpha }{ \cos 3 \alpha  +  \cos 7 \alpha + 2  \cos 5 \alpha\: } \: }

 =  \displaystyle \sf{  \frac{ 2\cos  \bigg( \frac{ \alpha + 5  \alpha }{2}  \bigg) \cos  \bigg( \frac{ \alpha  -  5  \alpha }{2}  \bigg)+ 2 \cos 3 \alpha }{ 2\cos  \bigg( \frac{ 3\alpha + 7 \alpha }{2}  \bigg) \cos  \bigg( \frac{ 3\alpha  -  7  \alpha }{2}  \bigg) + 2  \cos 5 \alpha\: } \: }

 =  \displaystyle \sf{  \frac{ 2\cos  \bigg( \frac{ 6 \alpha }{2}  \bigg) \cos  \bigg( \frac{ -  4  \alpha }{2}  \bigg)+ 2 \cos 3 \alpha }{ 2\cos  \bigg( \frac{ 10 \alpha }{2}  \bigg) \cos  \bigg( \frac{  - 4 \alpha }{2}  \bigg) + 2  \cos 5 \alpha\: } \: }

 =  \displaystyle \sf{  \frac{2 \cos  3\alpha  \cos2  \alpha + 2 \cos 3 \alpha }{ 2\cos 5 \alpha  \cos 2 \alpha + 2  \cos 5 \alpha\: } \: }

 =  \displaystyle \sf{  \frac{2 \cos  3\alpha(  \cos2  \alpha +1) }{ 2\cos 5 \alpha ( \cos 2 \alpha +1)} \: }

 =  \displaystyle \sf{  \frac{ \cos  3\alpha}{ \cos 5 \alpha } \: }

 \sf{  = \cos  3\alpha  \sec  5\alpha}

= RHS

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If cosx+cosy+cosz=0=sinx+siny+sinz

then the possible value of cos(x-y/2)=k

then |2k|=?

https://brainly.in/question/19988900

Similar questions