Math, asked by vidya1124, 1 year ago

cos 2 theta/(1-tan theta)+sin 3 theta/(sin theta - cos theta)=1+sin theta.cos theta

Answers

Answered by pragyalata5p5bzb4
167
hope this will help.
Attachments:
Answered by mysticd
88

Solution:

LHS = \frac{cos^{2}\theta}{(1-tan\theta)}+\frac{sin^{3}\theta}{(sin\theta-cos\theta}

= \frac{cos^{2}\theta}{1-\frac{sin\theta}{cos\theta}}+\frac{sin^{3}\theta}{(sin\theta-cos\theta)}

= \frac{cos^{2}\theta}{\frac{(cos\theta-sin\theta)}{cos\theta}}+\frac{sin^{3}\theta}{(sin\theta-cos\theta)}

= \frac{cos^{3}\theta}{(cos\theta-sin\theta)}-\frac{sin^{3}\theta}{(cos\theta-sin\theta)}

= \frac{cos^{3}\theta-sin^{3}\theta}{(cos\theta-sin\theta)}

/* we know the algebraic identity:

-b³ = (a-b)(+ab+) */

=\frac{(cos\theta-sin\theta)(cos^{2}\theta +cos\theta sin\theta+sin^{2}\theta)}{cos\theta-sin\theta}

After cancellation, we get

= cos^{2}\theta+sin^{2}\theta}+sin\theta cos\theta

/* We know the Trigonometric identity:

sin²A + cos²A = 1 */

= $1+sin\theta cos\theta$

= RHS

Similar questions