cos 2 theta minus sin 2 theta equal to one make it polar
Answers
Answered by
2
Answer:
f(x)=
∣
∣
∣
∣
∣
∣
∣
∣
1+sin
2
x
sin
2
x
sin
2
x
cos
2
x
1+cos
2
x
cos
2
x
4sin2x
4sin2x
1+4sin2x
∣
∣
∣
∣
∣
∣
∣
∣
=(1+sin
2
x)[(1+cos
2
x)(1+sin
2
x)−4sin2xcos
2
x]+cos
2
x[4sin2xsin
2
x−sin
2
x(1+4sin2x)]+4sin2xsin
2
x(cos
2
x−1−cos
2
x)
=(1+sin
2
x)(1+4sin2x+cos
2
x)+cos
2
x(−sin
2
x)−4sin2xsin
2
x
=1+4sin2x+cos
2
x+sin
2
x+4sin2xsin
2
x−4sin2xsin
2
x+cos
2
xsin
2
x−cos
2
xsin
2
x
=2+4sin2x (sin
2
x+cos
2
x=1)
∴f
′
(x)=
dx
d
(4sin2x+2)=8cos2x
f
′
(x)=0⇒8cos2x=0
∴cos2x=0
2x(2n−1)
2
π
x=(2n−1)
4
π
For max value
f
′
(α)<0
∴
dx
d
(8cos2x)=−16sin2x<0⇒sin2x>0
When cos2x=0⇒sin2x=±1. Since sin2x>0
∴nsin2x=1
Max f(a)=2+4(1)=6
Answered By
Similar questions