Math, asked by arpitadutta6900, 8 months ago

cos^2 theta / sin theta - cosec + sin theta=0​

Answers

Answered by TheProphet
9

S O L U T I O N :

\underline{\bf{Given\::}}

cos²Ф / sinФ - cosecФ + sinФ = 0

\underline{\bf{Explanation\::}}

Taking L.H.S .

\mapsto\tt{\dfrac{cos^{2} \theta }{sin \theta } -cosec \theta + sin\theta }

\mapsto\tt{\dfrac{1-sin^{2}  \theta }{sin \theta } -cosec \theta + sin\theta \:\:\:\underbrace{\therefore{\sf{ cos^{2} \theta = 1-sin^{2} \theta }}}}

\mapsto\tt{\dfrac{1}{sin \theta } - \dfrac{sin^2\theta}{sin\theta } - cosec \theta + sin\theta }

\mapsto\tt{\dfrac{1}{sin \theta } - \dfrac{\cancel{sin\theta}  \times sin \theta }{\cancel{sin\theta }} - cosec \theta + sin\theta }

\mapsto\tt{cosec \theta - sin\theta - cosec \theta + sin \theta \:\: \: \underbrace{\sf{\therefore 1/sin \theta = cosec\theta }}}

\mapsto\tt{\cancel{cosec \theta -cosec \theta } \cancel{- sin \theta + sin \theta} }

\mapsto\tt{0 + 0}

\mapsto\bf{0 }

Thus,

L.H.S = R.H.S  .

Similar questions