Math, asked by vkmistry2000, 10 months ago

cos^2 x + cos^ 2( x + π/3) + cos^2( x - π/3) = 3/2 According to Ch 3 Trigonometric Functions std 11th ​

Answers

Answered by anvithgudem
1

Answer:

Step-by-step explanation:

let us first calculate all three terms separately:

we know that

cos 2x = 2 cos^2 x -1

cos 2x + 1  = 2 cos^2 x \

cos 2x + 1 /2 = cos^2 x

 so cos^2 x = cos 2x + 1/2.

replacing x with (x + pi/3) is about

cos^2(x + pi/3) = cos 2(x + pi/3) + 1/2

               = cos(2x + 2pi/3) + 1/2

similarly,

replacing x with (x - pi/3) in cos^2 x =  cos + 2x + 1/2

cos^2 (x - pi/3) = cos 2(x - pi/3) + 1/2

                    = cos(2x - 2pi/3) + 1/2

Solving LHS:

cos^2 x + cos^2(x + pi/3) + cos^2( x- pi/3)

  = 1 + cos 2x/2 + 1 + cos(2x + 2pi/3)/2 + 1 + cos( 2x -2pi/3)/2

 = 1/2{( 1 + cos 2x + 1 + cos(2x + 2pi/3) + 1 + cos (2x - 2pi/3)}

 = 1/2{( 3 + cos 2x + cos( 2x + 2pi/3) + cos (2x - 2pi/3)}

                 

Using cos x + cos y = 2 cos (x + y/2). cos (x - y/2)

replace x by ( 2x + 2pi/3) and y by (2x - 2pi/3)

  = 1/2{ 3 + cos 2x + 2 cos( 2x + 2pi/3 + 2x - 2pi/3/2) .cos (2x + 2pi/3 -( 2x - 2pi/3/2)

= 1/2{( 3 + cos 2x + 2cos (4x + 0/2 ). cos( 0+ 4pi/3/2)

=  1/2{( 3 + cos 2x + 2cos (4x/2).cos (4pi/3/2)

=  1/2( 3 + cos 2x + 2cos 2x cos 2pi/3)

=  1/2{( 3 + cos 2x + 2cos 2x cos (pi-pi/3)}

= 1/2{( 3 + cos 2x + 2cos 2x (-cos(pi/3))}    ( as cos (pi - tita) = -cos tita)

= 1/2{( 3 + cos 2x + 2cos 2x ( -1/2)

   = 1/2 ( 3 + cos 2x - 2 *1/2*cos 2x)

   = 1/2 ( 3 + cos 2x -cos 2x

   = 1/2 (3 + 0)

   = 3/2     which is RHS

   

   HENCE LHS = RHS

   HENCE PROVED

Similar questions