Math, asked by vietptnguyen002, 9 months ago

cos^2(x)−sin((π)/(6)−x)sin((π)/(6)+x)

Answers

Answered by Anonymous
1

\huge{\underline{\underline{\purple{♡Solution→}}}}

 {cos}^{2} x -  \sin( \frac{\pi}{6} - x )  \sin( \frac{\pi}{6}  + 1)

We know that -

  • π = 180

 =  {cos}^{2} x -  \sin( \frac{180}{6}  - x)  \sin( \frac{180}{6} + 1 )  \\  \\  =  {cos}^{2} x -  \sin(30 - x)  \sin(30 + x)

Using the formulas -

  •  \sin(a - b)  =  \sin \: a \: cos \:b - cos \: a \: sin \: b
  •  \sin(a + b)  = sin \: a \: cos \: b + cos \: as \:  sin \: b

 =  {cos}^{2} x - (sin \: 30 \times cos \: x - cos \: 30 \times sin \: x)(sin \: 30 \times cos \: x  +  cos \: 30 \times sin \: x)

But ,

  • sin \: 30 =  \frac{1}{2}
  • cos \: 30 =  \frac{ \sqrt{3} }{2}

 =  {cos}^{2} x - ( \frac{1}{2} cos \: x -  \frac{ \sqrt{3} }{2} sin \: x)( \frac{1}{2} cos \: x  +  \frac{ \sqrt{3} }{2} sin \: x)

Using the identity -

  • (a + b)(a - b) =  {a}^{2}  -  {b}^{2}

 =  {cos}^{2} x - ((  \frac{1}{2}cos \: x)^{2}  - ( \frac{\sqrt{3}}{2}sin \: x)^{2}))

 ={cos}^{2} x - ( \frac{1}{4}cos^{2} \: x  - \frac{3}{4}sin^{2} \: x)

={cos}{^2}x-(\frac{cos^{2}x-3sin^{2}x}{4})

={cos}{^2}x-\frac{cos^{2}x-3sin^{2}x}{4}

=\frac{4cos^{2}x-cos^{2}x+3sin^{2}x}{4}

=\frac{3cos^{2}x+3sin^{2}x}{4}

=\frac{3(cos^{2}x+sin^{2}x)}{4}

We know that -

  • sin²x + cos²x = 1

=\frac{3(1)}{4}

\boxed{  {cos}^{2} x -  \sin( \frac{\pi}{6} - x )  \sin( \frac{\pi}{6}  + 1)=\frac{3}{4}}

\rule{200}{1}

Mark as Brainliest !! ✨✨

Similar questions