cos(20)cos(40)cos(80)=1/8
Answers
Answered by
4
xsin20=sin20cos20cos40cos80
= 1/2=sin40cos40cos80
= 1/4sin80cos80
= 1/8sin160
= imultiply by sin(20°) and repeatedly apply the double-angle identity sin(2x)=2sin(x)cos(x).
then
1/8sin20= 1/8 hence proved
= 1/2=sin40cos40cos80
= 1/4sin80cos80
= 1/8sin160
= imultiply by sin(20°) and repeatedly apply the double-angle identity sin(2x)=2sin(x)cos(x).
then
1/8sin20= 1/8 hence proved
Answered by
4
L.H.S ⇒ cos20cos40cos80
⇒ 1/2(2cos20cos40)cos80
⇒ 1/2(cos60 +cos20)cos80 { ∵ 2cosAcosB =cos(A+B) + cos(A-B)}
⇒ 1/2( 1/2 +cos20)cos80
⇒ 1/2(1+cos20/2)cos80
⇒ 1/4 (cos80 +2cos20cos80)
⇒ 1/4( cos80 + cos100 + cos60)
⇒ 1/4( cos80 + cos(180-100) + 1/2
⇒ 1/4 (cos80 - cos80 +1/2)
⇒ 1/4 x1/2
⇒ 1/8 = R.H.S
⇒ 1/2(2cos20cos40)cos80
⇒ 1/2(cos60 +cos20)cos80 { ∵ 2cosAcosB =cos(A+B) + cos(A-B)}
⇒ 1/2( 1/2 +cos20)cos80
⇒ 1/2(1+cos20/2)cos80
⇒ 1/4 (cos80 +2cos20cos80)
⇒ 1/4( cos80 + cos100 + cos60)
⇒ 1/4( cos80 + cos(180-100) + 1/2
⇒ 1/4 (cos80 - cos80 +1/2)
⇒ 1/4 x1/2
⇒ 1/8 = R.H.S
Similar questions