cos 20° cos 40° - sin 5° sin 25°=√3+1÷4
Answers
Answered by
230
cos 20°cos40°-L.H.S=sin5°sin25°=1/2[2cos20°cos40°-2sin25°sin5°]
=1/2[cos(40°+20°)+cos(40°-20°)-{cos(25°-5°)-cos(25°+5°)}]
=1/2[cos60°+cos20°-cos20°+cos30°]
=1/2[cos60°+cos30°]
=1/2(1/2+√3/2)
taking lcm,
=(√3+1)/4
............................................. proved.....................................
please mark me brainliest
=1/2[cos(40°+20°)+cos(40°-20°)-{cos(25°-5°)-cos(25°+5°)}]
=1/2[cos60°+cos20°-cos20°+cos30°]
=1/2[cos60°+cos30°]
=1/2(1/2+√3/2)
taking lcm,
=(√3+1)/4
............................................. proved.....................................
please mark me brainliest
Answered by
37
Answer:√3+1/4
Step-by-step explanation:
cos 20°cos40°-L.H.S=sin5°sin25°=1/2[2cos20°cos40°-2sin25°sin5°]
=1/2[cos(40°+20°)+cos(40°-20°)-{cos(25°-5°)-cos(25°+5°)}]
=1/2[cos60°+cos20°-cos20°+cos30°]
=1/2[cos60°+cos30°]
=1/2(1/2+√3/2)
=(√3+1)/4
mark me as brainliest pls i had a clear explanation
Similar questions
English,
7 months ago
History,
7 months ago
Environmental Sciences,
1 year ago
Social Sciences,
1 year ago
Chemistry,
1 year ago