cos 21° - sin 21°/cos 21° + sin 21°= tan 24°
Answers
Answered by
2
Answer:
Step-by-step explanation:
We have,
\dfrac{\cos 21-\sin 21}{\cos 21+\sin 21}
Rationalising numerator and denominator, we get
=\dfrac{\cos 21-\sin 21}{\cos 21+\sin 21}\times \dfrac{\cos 21-\sin 21}{\cos 21-\sin 21}
=\dfrac{(\cos 21-\sin 21)^{2} }{\cos ^{2} 21-\sin ^{2} 21}
=\dfrac{(\cos^{2} 21+\sin^{2} 21)^{2}-2\sin 21\cos 21 }{\cos 2\times 21}
[ ∵ \cos ^{2} A-\sin ^{2} A}=\cos 2A]
=\dfrac{(1-\sin 2\times 21) }{\cos 42}
[∵\sin 2A=2\sin A\cos A]
=\sec 42-\tan 42
Hence, the value of\dfrac{\cos 21-\sin 21}{\cos 21+\sin 21} is \sec 42-\tan 42.
Answered by
0
Step-by-step explanation:
this might help you ....,.............
Attachments:
Similar questions