Math, asked by samyuktha64, 1 year ago

cos 225+sin 165= pls give me solution

Answers

Answered by parmesanchilliwack
31

Answer:

\frac{\sqrt{2}}{4}(\sqrt{3}-1)

Step-by-step explanation:

Here, the given expression is,

cos 225^{\circ} + sin 165^{\circ}

=cos ( 270 - 45)^{\circ} + sin (90 + 75)

= -sin 45^{\circ} + sin 75^{\circ}

( Since, cos (270° - x) = - sin x and sin (90 + x) = sin x )

= -\frac{1}{\sqrt{2}}+ sin (45 + 30)^{\circ}

= -\frac{1}{\sqrt{2}} + sin 45^{\circ}\times cos 30^{\circ }+ cos 45^{\circ}\times sin 30^{\circ}

( Since, sin(a+b) = sin a × cos b + cos a × sin b )

= -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\times \frac{\sqrt{3}}{2}+ \frac{1}{\sqrt{2}}\times \frac{1}{2}

=-\frac{1}{\sqrt{2}} + \frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}

=\frac{-2+\sqrt{3}+1}{2\sqrt{2}}

=\frac{\sqrt{3}-1}{2\sqrt{2}}

=\frac{\sqrt{2}}{4}(\sqrt{3}-1)

Similar questions