cos 24° + cos 5° + cos 175° + cos 204° + cos 300°
Answers
cos(90-66°)+cos(180-175°)+cos175°+cos(270-66°)+cos(360-66°)=
sin66°-cos175°+cos175°-sin66°+cos60°=
cos60°=1/2
Answer:
The value of cos 24° + cos 5° + cos 175° + cos 204° + cos 300° is 0.5.
Step-by-step explanation:
Consider the provide expression.
cos24° + cos5° + cos175° + cos204° + cos300°
The value of cos∅ is positive in first and fourth quadrants and the value of cos∅ is negative in second and third quadrants.
The Trigonometrical Ratios rule:
cos(180°-θ)= -cosθ
cos(180°+θ)= -cosθ
cos(270°+θ)= sinθ
Therefore,
cos175°= cos(180°-5°)
So, cos175°= -cos5° [∴cos(180°-θ)= -cosθ]
Now consider cos204°
cos204° = cos(180°+24°)
cos204° = -cos24° [∴cos(180°+θ)= -cosθ]
Now consider cos300°
cos300° = cos(270°+30°)
cos300° = sin30° [∴cos(270°+θ)= sinθ]
Substitute the respective values in the provided equation.
cos24°+cos5°+cos175°+cos204°+cos300°
cos24°+cos5°-cos5°-cos24°+sin30°
sin30°= 1/2 = 0.5
Hence, the value of cos 24° + cos 5° + cos 175° + cos 204° + cos 300° is 0.5.