Cos 25°cos35°-sin10°sin20°
Answers
Answered by
1
Step-by-step explanation:
Cos 25°cos35°-sin10°sin20°
={Cos(25+35)°+Cos(25-35)°}÷2-{Cos(10-20)-Cos(10+20)}÷2
={Cos 60°+Cos(-10°)}÷2-{cos(-10°)-Cos(30°)}÷2
=Cos 60°/2+Cos10°/2-Cos10°/2+Cos30°/2
=(1/2)÷2+0+(√3/2)÷2
=1/4+√3/4=(1+√3)/4
Answered by
0
The value of Cos 25°cos35°-sin10°sin20° is
Step-by-step explanation:
W know that,
2cosA cos B = cos(A +B) + cos (A - B)
2sinA sin B = cos(A - B) - cos (A + B)
Rewrite the equation as,
⇒ 1/2 [2cos 25°cos35°-2sin10°sin20°]
cos(A +B) = cos(25+35)
= cos60
cos (A - B) = cos (25 - 35)
= cos (10)
⇒1/2 [2cos 25°cos35°-2sin10°sin20°]
⇒ 1/2 [ 1/2 + cos 10° - cos10° + √3/2]
⇒
⇒
Final answer:
The value of Cos 25°cos35°-sin10°sin20° is
#SPJ3
Similar questions