Math, asked by narayanapullapally, 19 days ago

cos 27 + sin 12 .(a) Show that cos 12-sin12 = Tan 57°​

Answers

Answered by pulakmath007
5

\displaystyle \sf{  \frac{cos \:  {12}^{ \circ}  +sin \:  {12}^{ \circ}  }{cos \:  {12}^{ \circ}   - sin \:  {12}^{ \circ}} = tan  {57}^{ \circ}   }

Given :

\displaystyle \sf{  \frac{cos \:  {12}^{ \circ}  +sin \:  {12}^{ \circ}  }{cos \:  {12}^{ \circ}   - sin \:  {12}^{ \circ}} = tan  {57}^{ \circ}   }

To find : To prove

Solution :

We are aware of the Trigonometric formula that

\displaystyle \sf{  tan(A + B)   =  \frac{tanA +tanB}{1 -tanA tanB} }

Now we have

RHS

\displaystyle \sf{  =   tan  {57}^{ \circ}   }

\displaystyle \sf{   = tan ( {45}^{ \circ}   + {12}^{ \circ})   }

\displaystyle \sf{    =  \frac{tan  \:  {45}^{ \circ}  +tan \: {12}^{ \circ}}{1 -tan \: {45}^{ \circ} tan \: {12}^{ \circ}} }

\displaystyle \sf{    =  \frac{1  +tan \: {12}^{ \circ}}{1 - tan \: {12}^{ \circ}} }

\displaystyle \sf{    =  \frac{1  + \dfrac{sin \: {12}^{ \circ}}{cos \: {12}^{ \circ}} }{1 - \dfrac{sin \: {12}^{ \circ}}{cos \: {12}^{ \circ}}} }

\displaystyle \sf{    =  \frac{ \dfrac{cos \: {12}^{ \circ} + sin \: {12}^{ \circ}}{cos \: {12}^{ \circ}} }{ \dfrac{cos \: {12}^{ \circ} - sin \: {12}^{ \circ}}{cos \: {12}^{ \circ}}} }

\displaystyle \sf{    =  \frac{ cos \: {12}^{ \circ} + sin \: {12}^{ \circ}}{ cos \: {12}^{ \circ} - sin \: {12}^{ \circ}} }

= LHS

Hence the proof follows

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if x cos a=8 and 15cosec a=8sec a then the value of x is

a) 20 b)16 c)17 d)13

https://brainly.in/question/46325503

2. 7 cos 30° + 5 tan 30° + 6 cot 60° is

https://brainly.in/question/46167849

3. 1+ sin2α = 3 sinα cosα, then values of cot α are

https://brainly.in/question/46265791

Similar questions