[cos(270-x) + Cos(360-x)]² + [sin (90-x) + sin(180-x)]²
Answers
Answered by
2
Answer:sin(180+x)=-sinx
cos(90+x)=-sinx
tan(270-x)=cotx
cot(360-x)=-cotx
sin(360-x)=-sinx
cos(360+x)=cosx
cosec(-x)=-cosecx
sin(270+x)=-cosx
therefore,
sin(180+x)cos(90+x)tan(270-x)cot(360-x)÷sin(360-x)cos(360+x)cosec(-x)sin(270+x)
=(-sinx)(-sinx)(cotx)(-cotx)÷(-sinx)(cosx)(-cosecx)(-cosx)
=(-sin x)(-sinx)(cosx/sinx)(-cosx/sinx)÷(-sinx)(cosx)(-1/sinx)(-cosx)
=1
Answered by
1
Answer:
cos (90+x) sec (270+x) sin (180+x) /cosec(-x) cos (270-x) tan (180+x).
=> {(-sin x)(cosec x)(-sin x)} / {(-cosec x)(-sin x)(tan x)}.
=> {sin²x cosec x} / {cosec x sin x (sin x / cos x)}.
=> {sin²x cosec x} / {(sin²x cosec x)/cos x}.
=> {(sin²x cosec x)(cos x)} / {(sin²x cosec x)}.
=> (sin²x cosec x)(cos x) / (sin²x cosec x).
=> cos x.
=> cos x.=> 1.
Similar questions