Math, asked by shineyyerra, 8 months ago

cos^2a[1+tan^2a]+sin^2a[1+cot^2a]=2

Answers

Answered by Anonymous
3

Solution:-

\rm\implies \cos^{2} a(1+\tan^{2} a) + \sin^2a(1+\cot^2a)=2

Now multiply

\rm\implies \cos^{2} a+ \cos^{2} a\tan^{2} a + \sin^2a+\sin^2a\cot^2a

Using trigonometry identities

\to\rm \tan a=\dfrac{\sin a}{\cos a}

\rm\to \cot a=\dfrac{\cos a}{\sin a}

\rm\to \sin x^{2} + \cos x^{2} = 1

Now we get

\rm\implies \cos^2 a + \cos^2 a\times \dfrac{\sin^2 a}{\cos ^2a}+\sin^2 a+\sin^2 a\times\dfrac{\cos^2 a}{\sin^2 a}

\rm\implies \cos^2 a +\cancel{ \cos^2 a}\times \dfrac{\sin^2 a}{\cancel{\cos ^2a}}+\sin^2 a+\cancel{\sin^2 a}\times\dfrac{\cos^2 a}{\cancel{\sin^2 a} }

\rm\implies \cos^2 a +  {\sin^2 a}+\sin^2 a+{\cos^2 a}{}

Using trigonometry identities

\rm\implies1+1

\implies 2

Hence proved

Definition of trigonometry

⇒ It is the branch of mathematics which deal with the measurement of angles and problems allied with angles

Similar questions