Math, asked by 8707097291, 1 year ago

cos^2A+cos^2(A+60)+cos^2(A-60)=3/2

Answers

Answered by AyushStrange0001
15
Hello user☺☺

It will be..

cos^2A + cos^2(A+60) + cos^2(A-60) = 3/2

cos^2A + cos^2Acos^2 60° - sin^2Asin^2 60° + cos^2Acos^2 60° + sin^2Asin^2 60° =3/2

cos^2A +2 × cos^2A × 1/4 = 3/2


3/2 cos^2A = 3/2

Cos^2A = 1

Cos A = 1 and -1

So, A = 90° or 270°


Hope it works☺☺

8707097291: bhai question aapne galt type kar liya hai
8707097291: no problem bhai
Answered by siddhibhatia150304
6

 \huge \color{pink}\underline \bold { \underline \color{plum} \mathcal{HEYA }}

 {cos}^{2} A +  { \cos}^{2} (A + 60) +  {cos}^{2} ( A - 60) =  \frac{3}{2}

Using the formula

  \small{\cos( \alpha  +  \beta )  =  \cos( \alpha )  \cos( \beta )  -  \sin( \alpha )  \sin( \beta )}

and

  \small{\cos( \alpha  -  \beta )  =  \cos( \alpha )  \cos( \beta )  +  \sin( \alpha )  \sin( \beta ) }

  \small{cos}^{2} A +  {cos}^{2} A \:  {cos}^{2} 60 \degree -  {sin}^{2} A \:  {sin}^{2} 60 \degree +  {cos}^{2}A \:  {cos}^{2}  60 \degree +  {sin}^{2} A \:  {sin}^{2} 60 \degree \:  =  \frac{3}{2}

 \small {cos}^{2} A +  \frac{1}{4}  {cos}^{2} A +  \frac{1}{4}  {cos}^{2} A =  \frac{3}{2}

 {cos}^{2} A(1 +  \frac{1}{4}  +  \frac{1}{4} ) =  \frac{3}{2}

 \frac{3}{2}  {cos}^{2} A =  \frac{3}{2}

 {cos}^{2} A = 1 \implies \: cos \: A =     +  - 1

 A =  \color{green}90 \degree \: or \: 270 \degree

Hope it helps ✌️ ✌️

Similar questions