cos^2A+cos^2b+2cosA×cosB×cosc=sin^2c
Answers
Answered by
28
Answer:cos(A+B)=Cos(180°-C)
CosA×CosB-SinA×SinB=-cosC
now,interchaging it's place
CosA×CosB+CosC=SinA×SinB
now squaring on both side .
then ,(CosA×CosB+CosC)^2=sin^2A×sin^2B
=Cos^2A×Cos^2B+2CosA×CosB×CosC=(1-Cos^A)*(1-Cos^2B)
=Cos^2A×Cos^2B+2CosA×CosB×CosC+cos^2C=1-Cos^2B+Cos^2A-Cos^2A×Cos^2B
=Cos^2A+cos^2B+Cos^2C=1-2cosAcosBcosC
HOPE IT HELPS U
Answered by
9
.
cos(A+B)=Cos(180°-C)
CosA×CosB-SinA×SinB=-cosC
now,interchaging it's place
CosA×CosB+CosC=SinA×SinB
now squaring on both side .
then ,(CosA×CosB+CosC)^2=sin^2A×sin^2B
=Cos^2A×Cos^2B+2CosA×CosB×CosC=(1-Cos^A)*(1-Cos^2B)
=Cos^2A×Cos^2B+2CosA×CosB×CosC+cos^2C=1-Cos^2B+Cos^2A-Cos^2A×Cos^2B
=Cos^2A+cos^2B+Cos^2C=1-2cosAcosBcosC
Similar questions