Cos^2A + Cos^2B - 2CosACosB Cos [A +B] = Sin^2[A+B] . Prove
Answers
Answered by
0
Answer:
L.H.S=cos2A+cos2B−2cosAcosBcos(A+B)=cos2A+cos2B−2cosAcosB(cosAcosB−sinAsinB)=cos2A+cos2B−2cos2Acos2B+2cosAsinAcosBsinBR.H.S=sin2(A+B)=(sin(A+B))2=(sinAcosB+cosAsinB)2=sin2Acos2B+cos2Asin2B+2sinAcosAsinBcosB=(1−cos2A)cos2B+cos2A−cos2Acos2B=cos2B−cos2A+cos2B+cos2A−cos2Acos2B.=cos2A+cos2B−2cos
Similar questions
Math,
4 months ago
English,
4 months ago
India Languages,
4 months ago
Math,
8 months ago
Psychology,
1 year ago