Math, asked by robiulacce33, 9 months ago

cos^2A -sin^2A=1/2 then cos^4A-sin^4A=?

Answers

Answered by srujanamango
1

Step-by-step explanation:

It's in the attachment :)

Attachments:
Answered by shadowsabers03
11

Given,

\longrightarrow\cos^2A-\sin^2A=\dfrac{1}{2}\quad\quad\dots(1)

We have to find value of \cos^4A-\sin^4A.

We know that,

\longrightarrow\cos^2A+\sin^2A=1\quad\quad\dots(2)

So, on multiplying (1) and (2),

\longrightarrow(\cos^2A-\sin^2A)(\cos^2A+\sin^2A)=\dfrac{1}{2}\times1

Since (a-b)(a+b)=a^2-b^2,

\longrightarrow(\cos^2A)^2-(\sin^2A)^2=\dfrac{1}{2}

\longrightarrow\underline{\underline{\cos^4A-\sin^4A=\dfrac{1}{2}}}

Hence 1/2 is the answer.

________________________________

Some Trigonometric Identities:-

\longrightarrow\sin^2A+\cos^2A=1

\longrightarrow\sec^2A-\tan^2A=1

\longrightarrow\csc^2A-\cot^2A=1

\longrightarrow\sin(A\pm B)=\sin A\cos B\pm \cos A\sin B

\longrightarrow\cos(A\pm B)=\cos A\cos B\mp \sin A\sin B

\longrightarrow\tan(A\pm B)=\dfrac{\tan A\pm\tan B}{1\mp\tan A\tan B}

\longrightarrow \sin(A+B)+\sin(A-B)=2\sin A\cos B

\longrightarrow \sin(A+B)-\sin(A-B)=2\cos A\sin B

\longrightarrow \cos(A+B)+\cos(A-B)=2\cos A\cos B

\longrightarrow \cos(A+B)-\cos(A-B)=-2\sin A\sin B

Similar questions