Math, asked by harshtongar, 11 months ago

cos 2B=cos(A+C)/cos(A-C) then​

Answers

Answered by Anonymous
33

Your Answer !!!!!

__________________________________

》If Cos\: 2B =\:\frac{cos(A+C)}{cos(A-C)}

》Then tan \: A ,\: tan \:B,tan \: C are in .

___________________________________

Answered by Anonymous
13

\rule{200}3

\Huge{\purple{\underline{\textsf{Question}}}}

\leadsto \sf cos 2B = \frac{cos(A + C)}{cos(A - C)}\:then,

\rule{200}3

\Huge{\red{\underline{\textsf{Answer}}}}

\leadsto \sf cos 2B = \frac{cos(A + C)}{cos(A - C)}

\leadsto \sf \frac{cos 2B}{1} = \frac{cos(A + C)}{cos(A - C)}

\leadsto \sf \frac{cos 2B + 1}{cos 2B - 1} = \frac{cos(A + C) + cos(A - C)}{cos(A + C) - cos(A - C)}

\leadsto \sf \frac{2 sin^{2}B}{2 cos^{2}B} = \frac{2 sin A\: sin C}{2 cos A \:cos C}

\leadsto \sf tan^{2}B = tan A\:tan C

\pink\leadsto \boxed{\pink{\sf \frac{tan A}{tan B} = \frac{tan B}{tan C}}} \orange\star

\rule{200}3

Similar questions